
1.  Introduction
Freshwater resources are essential for preserving public health, agricultural yields, economic strategies, 
and ecosystem functions (Gleick & Palaniappan, 2010; Michael et al., 2017). As populations and econo-
mies grow, new constraints on water resources emerge that may limit global water availability (Gleick & 
Palaniappan, 2010). Optimized groundwater systems' characterization and seeking alternative freshwater 
resources are vital to address the increasing demand worldwide. Hence, such demand positions ground-
water research at the center of broad interdisciplinary interest from industry, government, and academic 
organizations (e.g., Manzoor et al., 2020; Person et al., 2017). For the past decade, considerable evidence 
suggests that vast offshore groundwater reserves exist globally in submarine provinces extending far beyond 
their presumed coastal boundaries (Post et al., 2013; Micallef, Person, Berndt, et al., 2020). These offshore 
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groundwater reservoirs are more prevalent than initially thought, thus are being recognized as potential 
water resources for coastal communities (Bakken et al., 2012; Cohen et al., 2010; Jiao et al., 2015).

Actively recharged offshore submarine groundwater accumulations can sometimes manifest by a process 
known as submarine groundwater discharge (SGD), where fresh groundwater percolates upward from 
the sub-seafloor to the water column, altering ocean water salinity, temperature, and chemistry (e.g., 
Church, 1996; Kohout, 1966; Burnett et al., 2003; Moore, 2010). A recent estimate suggests that tropical 
coasts transport more than 56% of near-global fresh SGD (Zhou et al., 2019). The fresh portion of SGD is 
critical, as it potentially buffers ocean acidification with groundwater alkalinity (Cyronak et al., 2013; Slomp 
& Van Cappellen, 2004). While coastal SGD has been documented globally at various geological settings 
(Kim & Kim, 2011; Knee et al., 2016; Paldor et al., 2020; Prakash et al., 2018; Stieglitz, 2005), reports on deep 
offshore SGD sources (disconnected from coastal SGD, usually appear at water depths >50 m) are scarce 
but of potential importance. Fresh SGD is commonly associated with oceanographic, hydrogeological, and 
environmental processes that affect chemical weathering, ocean eutrophication, and climate change by em-
anating solutes and gases to the ocean (e.g., Moore, 2010; Kim & Kim, 2011; Taniguchi et al., 2019; Luijendi-
jk et al., 2020). Hence, SGD has societal importance for coastal communities (Moosdorf & Oehler, 2017).

The locations and rates of nearshore/offshore SGD are essential to define boundary conditions in coastal 
aquifer models and quantify the nutrients and contaminants transported to the marine environment (e.g., 
W. S. Moore, 1996; Duarte et al., 2006). Fresh SGD in coastal waters affects stable isotope levels (Mayfield 
et al., 2021) and global carbon budgets (e.g., Maher et al., 2013). Ecosystems ranging from plankton to fish 
benefit from SGD, exhibiting enhanced productivity and fish abundance near groundwater springs due 
to favorable temperature, nutrient content, and oxygen levels of the discharged groundwater (e.g., Fuji-
ta et al., 2019; Slomp & Van Cappellen, 2004; Starke et al., 2020). Conversely, nutrient-rich SGD causes 
increased phytoplankton and macroalgae growth, reduction of seagrass beds and associated fauna (e.g., 
Paerl, 1997; Valiela et al., 1990), as well as Mercury contamination of fish habitats (Black et al., 2009). Thus, 
SGD alters species diversity and marine habitats' dynamics.

SGD is commonly studied using various geophysical, geochemical, bioecological, and numerical sim-
ulation methods, utilizing seepage meters and hydraulic gradient observations (e.g., Burnett et al., 2006; 
Moore, 2010; Taniguchi et al., 2019; Rosenberry et al., 2020). Nevertheless, it is nontrivial to produce re-
gional SGD maps in high-resolution due to extensive spatiotemporal variability of fluxes, ranging from 
focused springs to broad seepage fields (e.g., Burnett et al., 2003; Burnett et al., 2006; Duarte et al., 2006; 
Luijendijk et al., 2020; Mayfield et al., 2021). Therefore, high-resolution field characterizations of SGD on 
regional scales are scarce. Thermal infrared imagery and geochemical tracer studies performed along the 
coast of west Hawai'i infer daily coastal groundwater discharge that varies between 1,100 and 13,700 m3/d 
(Dulai et al., 2016; Johnson et al., 2008; Peterson et al., 2009). However, these studies only provide informa-
tion about buoyant brackish/freshwater plumes discharging at the coastline, thus, neglecting offshore SGD. 
Therefore, offshore SGD locations, spatial plume distribution, and volumetric inventory from the seafloor 
to the ocean surface are poorly constrained offshore west Hawai'i as well as globally.

Freshwater is electrically resistive whereas seawater is conductive. Therefore, marine controlled-source 
electromagnetic (CSEM) methods have proven useful in imaging brackish/freshwater sub-seafloor accumu-
lations at sedimentary regions (e.g., Evans & Key, 2016; Haroon et al., 2018; Gustafson et al., 2019; Micallef, 
Person, Haroon, et al., 2020), as they are sensitive to contrasts in bulk electrical resistivity resulting from 
alterations in pore water salinity (Edwards, 2005; S. Constable, 2010). However, CSEM data inversion has 
never been used to image freshwater plumes within the water column. Here, we employ a newly developed 
surface-towed CSEM system (Sherman et al., 2017) demonstrating for the first time the CSEM techniques' 
capability to image freshwater plumes in high-resolution on a local scale, as well as surface freshwater on 
a regional scale, offshore west of Hawai'i. Additionally, we present plume-scale salinity distribution and 
freshwater volumetric estimation.

1.1.  Geologic and Oceanographic Setting

Extensive basaltic units in Hawai'i were formed consequently to volcanic eruptions during the initial build-
ing stage of each volcano (Gingerich & Oki, 2000). These volcanic eruptions are characterized by lava flows, 
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faults, dikes, ash beds, lava tubes, and pyroclastic deposits, which compose Hawai'ias terrestrial, and sub-
marine aquifers (Gingerich & Oki, 2000; Oki, 1999). The abundance of lava tubes in this region increases 
the volcanic rocks' permeability, thereby promoting large aquifers (Gingerich & Oki, 2000; Oki, 1999). The 
shallow region offshore Hawai'i surveyed in this study (Figure 1) is comprised of subaerial lava drapes, 
intermediately covered by coral reef terraces (J. G. Moore & Clague, 1987; Taylor, 2019), and low sediment 
content (see supporting information Figure S1). This volcanic formation enables freshwater flux from the 
sub-seafloor to the ocean.
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Figure 1.  Map of the study area parallels the Hualalai terrestrial aquifer at Kailua-Kona, offshore west Hawai'i. The 
black lines denote the survey towlines (10 inlines and two crosslines). Blue lines represent regions where freshwater 
plumes were detected (Figures 2, 3, and S8). The purple and yellow polygons represent coastal SGD areas detected 
in previous studies. White lines denote depth contours of 200 m, and gray lines the depth contours of 1,000 m. Inset 
map: The island of Hawai'i, with a black rectangle indicating the main map area. The Hualalai terrestrial aquifer 
encompasses the entire map region. Areas with no bathymetry data are shown in white. Bathymetry data: Courtesy of 
Hawai'i Mapping Research Group.
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SGD has a unique role in Hawai'i's ocean biogeochemistry, as it is the 
sole source of nutrients to the region's oligotrophic coastal waters (John-
son et al., 2008). The continuous influx of SGD to west Hawai'i coastline 
results in nutrient-rich brackish mixtures of fresh and seawater (Dimova 
et al., 2012; Dulai et al., 2016; Johnson et al., 2008). North Pacific Sub-
tropical Gyre and Hawaiian archipelago interactions dominate the cur-
rent dynamics in west Hawai'i via tidally-induced internal waves. These 
currents' governing direction is along-shore with an average magnitude 
of 0.05–0.1 m/s (Janeković et al., 2013).

2.  Methods
2.1.  Data Acquisition and Processing

In September 2018, we collected marine CSEM data using a sur-
face-towed CSEM system to image the electrical resistivity structure of 
the submerged flank of the Hualalai volcano (Attias et al., 2020), as well 
as the oceanic water column offshore west of Hawai'i. Our survey includ-
ed towlines parallel and perpendicular to the Hualalai terrestrial aquifer 
at incremental distances from the Kailua-Kona coastline, covering an off-
shore area of approximately 4 × 40 km, producing ∼200 km of continu-
ous CSEM data (Figure 1).

The surface-towed CSEM system employs a 40-m-long dipole antenna 
towed in ∼0.5 m depth behind the survey boat at an average speed of 3.5 
knots while transmitting a 100 A current. A doubly symmetric square 
waveform (Myer et al., 2011) at a fundamental frequency of 1 Hz with a 
sampling rate of 250 Hz generated a source dipole moment of 5.09 kAm 
(Attias et al., 2020). The survey boat surface-towed four broadband elec-
tromagnetic (EM) receivers at offsets 268, 536, 804, and 1,072 m. A Dorsal 
unit positioned 30 m behind the EM receivers array recorded the water 
depth and surface water conductivity/temperature. Each EM receiver 
recorded the inline horizontal electric field on a 2 m dipole positioned 
∼0.65 m below the ocean surface. GPS units positioned above sea level 
(timing accuracy of 10 ns) and electronic compasses logged the receiver 
positions and orientations, respectively.

The acquired CSEM data were Fourier transformed into the frequency 
domain and stacked over 60  s intervals. This stacking corresponds to 

∼20 m lateral distance between receiver stack points, producing high-density amplitude and phase respons-
es as a function of position and frequency harmonics. The stacked amplitude and phase responses were 
then merged with the transmitter's and receiver's navigational information. For the CSEM inversion, we 
used the strongest harmonics of the doubly symmetric square waveform (Myer et al., 2011), here corre-
sponding to frequencies of 3 and 7 Hz. These two frequencies produced quality data and high sensitivity to 
the electrical resistivity of the water column. In combination with high data density, the frequencies yielded 
high-resolution inversion models.

2.2.  CSEM Inversion Parameterization

To invert the CSEM data for electrical resistivity, we employed the open-source MARE2DEM code, a 2-D 
nonlinear regularized inversion method that uses a parallel goal-oriented adaptive finite-element algorithm 
(Key, 2016). MARE2DEM employs Occam's inversion, which searches for the smoothest model that fits the 
data to a predefined root-mean-square (RMS) target misfit (Constable et al., 1987). Here, we used quality 
data with a high signal-to-noise ratio of 20, which led to irregular receiver spacing (Figures 2, 3a and s8a). 
The CSEM inversion-starting model discretization includes a 1013 Ωm air layer as a fixed-parameter, fol-
lowed by finely discretized (20 m × 10 m) quadrilateral mesh for the water column (free parameters with 
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Figure 2.  Two-dimensional inversion models derived from the CSEM data 
acquired in survey lines 3b and 3c. The color scale presents the electrical 
resistivity in log10[ρ(Ωm)]. Black squares and gray diamonds denote 
transmitter and receiver positions, respectively. (a) Line 3b inversion 
model. The gray dashed line represents the seafloor, positioned at a water 
depth of ∼50 m. Resistive freshwater plume imaged at a towline distance 
of ∼1.23 km. The plume is most likely fed by SGD (white arrow) sourced 
from the sub-seafloor layer of freshened water-saturated basalts. Two 
lateral resistive anomalies from both flanks of the model represent surface 
freshwater bodies. We note that for enhanced visuality of the water column 
resistive anomalies, the resistivity shading thresholds are set to ∼1.7 Ωm 
and ∼6 Ωm for the plume and surface freshwater bodies, respectively. 
This inversion converged to an RMS misfit of 1.0 after 12 iterations. The 
amplitude and phase data error floors are 8%. (b) Line 3c inversion model. 
Moderate freshwater plume detected at a towline distance of ∼1.35 km. 
The shallow lateral resistive anomalies represent surface freshwater bodies 
that extend up to 700 m. The resistivity shading thresholds are set to ∼1 
Ωm and ∼6 Ωm for the plume and surface freshwater bodies, respectively. 
This inversion fits an RMS misfit of 1.0 after 14 iterations, with error floors 
of 8% and 6% for the amplitude and phase data.
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a starting value of 0.2  Ωm), and fine mesh elements for the sub-sea-
floor (1,000  m  ×  10  m), defined as free parameters (starting resistivity 
of 10 Ωm), as illustrated in supporting information Figure S2. Outside 
the region of interest, the model space quadrilateral mesh is 2-by-2 km. 
A high-resolution multibeam system recorded the bathymetry (support-
ing information Figure S1) used in the CSEM inversion modeling. The 
40-m-long dipole transmitter and the 2 m-long towed EM receiver dipoles 
(Attias et  al.,  2020) were modeled as finite dipole lengths (Key,  2016). 
The inversions' starting horizontal-to-vertical roughness assigned to the 
models varies between 2 and 10 as a function of each model width-to-
depth ratio. All of our CSEM inversion models fit the data to an RMS 
misfit of 1.0 with adequate model-to-data fits, yielding minimal and 
randomly distributed normalized residuals (see supporting information 
Figures S3–S5).

2.3.  Resistivity-to-Salinity Calculation

The electrical conductivity (reciprocal of electrical resistivity) derived 
from our CSEM inversion models were converted to salinity profiles (Fig-
ures 3b and S8b) using the unitless Practical Salinity Scale 1978 (Lewis & 
Perkin, 1978). Salinity was calculated for each model cell extracted from 
the resistivity models. We then filtered the data points for salinities <10, 
thus solely yielding cells representing freshwater plume. By employing a 
2-component mixing formula, we calculated the total volume of freshwa-
ter in each cell using Equation 1.

   _ 1 1 2 2Sal mixed f sal f sal (1)

where Sal_mixed represents the calculated (from resistivity) mixed salin-
ity, f1 the volumetric fraction of pure freshwater, sal1 the salinity of pure 
freshwater, f2 the volumetric fraction of pure ocean water (f2 = 1 - f1), 
and sal2 the salinity of pure ocean water (assuming it equals to 35). For 
pure freshwater, we can assume that sal1 equals 0; therefore, Equation 1 
can be rearranged to calculate the volumetric fraction of pure freshwater, 
as shown in Equation 2.

 1 1 _ / 2f Sal mixed sal (2)

The resistivity-to-salinity conversion method applied here is theoretically robust. However, this method is 
limited in regions where the resistivity values are significantly small or significantly large. As resistivity val-
ues proceed toward minimal values, the resulting salinities approach infinity (see supporting information 
Figure S6). While measured resistivities cannot be zero, the step size effectively limits the method's ability to 
distinguish between different salinity values above ∼10 (linear scale). Therefore, we chose 0.58 Ωm (salinity 
of 10) as the method lower sensitivity limit, as it represents the point in the resistivity-salinity curve where 
the salinity change per unit of resistivity change nears a vertical slope (supporting information Figure S6). 
Because of this relationship, salinities within a range of 11–35 cannot be distinguished. Consequently, re-
gions (derived from CSEM inversions) with salinities of more than 10 were not calculated.

3.  Results
The electrical resistivity structure of the sub-seafloor offshore west Hawai'i using all the survey lines shown 
in Figure 1 has been characterized by Attias et al., 2020. Here, we focus on 2-D isotropic CSEM inversion 
modeling of the water column using data collected at four sections of survey line 3 (Figure 1). Our CSEM 
models imaged electrically resistive freshwater plumes in high-resolution and unveiled spatially distributed 
anomalous resistive regions at the ocean surface, indicative of freshwater bodies (Figures 2 and 3). Daily 
pre/post survey conductivity, temperature, and depth (CTD) profiles detected multiple resistive anomalies 
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Figure 3.  (a) Two-dimensional inversion model derived from the CSEM 
data acquired in survey line 3d. The color scale presents the electrical 
resistivity in log10[ρ(Ωm)]. The gray dashed line represents the seafloor, 
positioned at a water depth of ∼95 m. For enhanced visuality of the water 
column resistive anomalies, the resistivity shading thresholds are ∼1.7 
Ωm and ∼6 Ωm for the plume and surface freshwater body, respectively. 
Distinctive freshwater plume imaged at a towline distance of ∼1–1.1 km. 
This inversion converged to an RMS of 1.0 after 15 iterations, with error 
floors of 9% (amplitude) and 7% (phase) data. Black rectangular represents 
the water column plume area selected for salinity calculation. (b) Line 
3d water column salinity distribution. The black line encompasses low 
salinities (<10) within the plume, calculated from the resistivity model. 
The average plume salinity is 4.4, with ∼87% of freshwater. Salinities 
outside the plume were not calculated (see Section 2.3).
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corresponding to notables decrease in salinities, which confirms the presence of freshwater plumes offshore 
west Hawai'i. The Jacobian sensitivity matrix (Farquharson & Oldenburg, 1996; MacGregor et al., 2001) 
derived from our inversion models demonstrate high data sensitivity to model parameters across the water 
column (supporting information Figure S7).

3.1.  Electromagnetic Imaging of Freshwater Plumes

Survey line 3b (located ∼2 km from the coastline) electrical resistivity model presents a vertical feature with 
varying resistivity, ranging from ∼2 Ωm near the seafloor to ∼25 Ωm at the ocean surface (Figure 2a). We 
interpret this vertical resistor as a freshwater plume as the ocean background resistivity is ∼0.2–0.4 Ωm. 
Such plume-shaped freshwater features migrating vertically upward to the water column have been previ-
ously observed in continental shelves (Dimova et al., 2011; Kohout, 1966). This freshwater plume is ∼60 m 
wide at the seafloor and ∼130 m at the surface (Figure 2a). From both flanks of the model, two laterally 
elongated resistive anomalies (∼30 Ωm) extend from the surface to a depth of ∼15 m, indicating the pres-
ence of surface freshwater. The surface freshwater body from northeast of the plume most likely emerges 
from adjacent SGD point-sources or extend from coastal SGD, as it is disconnected from Line 3b plume 
(Figures 2a, 4). The model-to-data fit and normalized residuals of line 3b inversion are shown in supporting 
information Figure S3.

Similar to the electrical resistivity model of survey line 3b, the resistivity model of survey line 3c exhibits a 
central vertically elongated freshened (moderately brackish) water plume, with a resistivity range of ∼1–5 
Ωm from the seafloor to the ocean surface, respectively (Figure 2b). This plume is ∼100 m wide at the sea-
floor and ∼80 m at the surface. Additionally, two laterally extensive surface freshwater bodies were detected, 
showing resistivity of ∼30 Ωm (Figure 2b). The surface freshwater body at the northwest flank of the model 
is disconnected from the plume. However, the southeast surface freshwater body is slightly linked to the 
plume, presenting a six times higher resistivity than the plume's surface resistivity (Figure 2b). This suggests 
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Figure 4.  Conceptual model illustrating freshwater plumes and surface freshwater systems offshore west Hawai'i. Fresh groundwaters are transported 
from onshore to offshore through multilayer basaltic formation (Attias et al., 2020). From this sub-seafloor formation, freshened/freshwater migrate upward 
via porous/fractured seawater-saturated basalts, producing multiple large-scale vertical plumes that extend from the seafloor to the ocean surface. Surface 
freshwater bodies disconnected from plumes most likely result from nearby seeps or coastal SGD runoffs.
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that the southeast surface freshwater body accumulates freshwater from nearby seeps, coastal SGD runoff, 
or line 3c plume (Figure 4). Supporting information Figure S4 shows the model-to-data fit and normalized 
residuals of line 3c inversion.

The electrical resistivity model of survey line 3d (located 0.5–1 km from the coastline) presents a prominent 
freshwater plume that is laterally extensive (∼200 m wide) above the seafloor and at the ocean surface but 
narrow at its center (Figure 3a). The plume's highest resistivity (∼30 Ωm) is between the surface and ∼25 m 
water depth, whereas near the seafloor, the water resistivity is ∼5 Ωm. The sub-seafloor freshened water 
layer (Attias et al., 2020) and the water column plume appears to be linked. However, the high resistivity 
detected at the upper plume part most likely results primarily from nearby SGD. At the northwest flank of 
the model, ∼30 Ωm resistive anomaly exists between the surface and ∼15 m depth, extending horizontally 
about 130 m (Figure 3a). This surface freshwater body is disconnected from line 3d plume, representing 
freshwater flux from nearby point-source discharge or coastal SGD runoff that drifted into line 3d profile 
(Figure 4). Figure s5 shows the model-to-data fit and normalized residuals of line 3d inversion. The electri-
cal resistivity model of survey line 3a (located ∼2.3 km from the coastline) shows a freshened water plume 
(∼2.5 Ωm) that traverses the water column (supporting information Figure S8a). This plume is ∼100 m wide 
at the seafloor and ∼20 m at the surface. Figure s8a ideally demonstrates that a sub-seafloor freshened water 
layer (Attias et al., 2020) feeds this plume.

3.2.  Plume Salinity Distribution and Freshwater Volumetric Estimation

We calculated the water column salinity distribution and freshwater volumetric estimation for the plumes 
entirely disconnected from surface freshwater bodies, as imaged by the resistivity models of survey lines 
3d and 3a (Figures 3a and s8a). For this purpose, we used the unitless Practical Salinity Scale 1978 (Lewis 
& Perkin, 1978) to derive water column salinities that are less than 10 (see Section 2.3). The salinity dis-
tribution of line 3d plume region (206 m long, 83 m deep) was calculated using 4,242 points represented 
as model cells (Figure 3b). The total unit volume of the profile is 17,100 m3. Note that unit volume refers 
to a profile thickness of 1 m. Salinities less than 10 were found in 2,762 model cells, representing a plume 
unit volume of 12,280 m3. The inner plume calculated salinities ranged from 0.3 to 9.88 (Figure 3b), with 
an average salinity of 4.4. By applying the 2-component mixing equation (Section 2.3), we computed that 
the total freshwater unit volume for line 3d inner plume area is 10,720 m3, composed of approximately 87% 
freshwater and 13% ocean water.

The salinity distribution of line 3a plume region (308  m long, 83  m deep; supporting information Fig-
ure S8b) was calculated using 6,204 points. The total unit volume of the profile is 23,400 m3. Salinities less 
than 10 were found in 1,778 model cells, representing a plume unit volume of 7,473 m3. The inner plume 
calculated salinities ranged from 0.5 to 9.85 (Figure s8b), with an average salinity of 5.3. The total calculated 
freshwater unit volume for line 3a inner plume area is 6,350 m3. Such volume equates to a plume composi-
tion of about 85% freshwater and 15% ocean water.

4.  Discussion
Terrestrial aquifers are one of Hawai'i's most critical natural resources, providing the majority of water for 
drinking, irrigation, domestic, commercial, and industrial needs, as well as coastal groundwater-dependent 
ecosystems (Duarte et al., 2010; Gingerich & Oki, 2000). Due to forecasted decreases in rainfall at areas 
under existing climate change projections (Timm et al., 2015; Zhang et al., 2016), increase in population, 
and agricultural demands in Hawai'i, it is essential to consider offshore freshwater discharges in future hy-
drogeologic models to optimize sustainable yields and aquifer storage calculations.

Hawai'i's SGD are typically point-source discharges (e.g., Johnson et al., 2008; Peterson et al., 2009) due to 
the nature of basalt aquifers preferential flow conduits channeling (Kreyns et al., 2020). Contrarily, SGD 
in clastic and karstic coastal aquifers present broad and diffusive seepage fields (e.g., Burnett et al., 2003; 
Moore & Wilson, 2005; Montiel et al., 2018). Multiple point-source SGD along the Kailua-Kona coastline 
are possibly linked to inland lava flow formations (Peterson et al., 2009; Dimova et al., 2012), manifested 
by sub-seafloor laterally continuous freshened groundwater reservoirs (Attias et al., 2020). Multichannel 
electrical resistivity measurements (Dimova et al., 2012) provide evidence for substantial coastal SGD via 
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well-defined freshwater conduits in Kiholo Bay (Figure 1). Such buoyant coastal SGD plumes can extend 
several hundred meters offshore, exhibiting sharp boundaries despite intense coastal mixing (e.g., Janek-
ović et al., 2013; Johnson et al., 2008) — the offshore freshwater plumes we describe above present similar 
distinct boundaries.

Calculation of coastal SGD rates at west Hawai'i from surface thermal infrared imagery and point-source 
measurements suggests a total discharge that averages between 8,600 and 9,600 m3/d [(Johnson et al., 2008; 
Dimova et al., 2012; Dulai et al., 2016), Figure 1]. Such discharge values are reasonably comparable with our 
estimation of the plumes unit volumes, assuming a residence time of approximately a day. These calculated 
volumes suggest that substantial SGD fluxes are required to produce sharply bounded, well-defined large 
freshened/freshwater plumes (Figures 2–4 and S8), to overcome the regional dynamic current field that 
generates effective mixing (Janeković et al., 2013). Nevertheless, it is difficult to estimate these freshwater 
plumes' flux rates due to the lack of parallel ocean currents and mixing observations. Such notable dis-
charge is supported by water mass balance study (Hudson et al., 2018), which demonstrates that significant 
fresh groundwater recharge/discharge volumetric misbalance (∼40%) exists between the Hualalai aquifer 
groundwater recharge and coastal SGD along the corresponding Kailua-Kona shoreline. The observations 
above suggest that offshore submarine freshened water layers (Attias et al., 2020) are most likely renewable 
water sources, primarily dependent on rainfall patterns.

As the discharge locations and freshwater rates are highly heterogeneous, spatiotemporal estimates of SGD 
are essential for better managing water resources and predicting land-ocean boundary and water quality 
threats to coastal aquifers (Sawyer et al., 2016). For example, high-permeability conduits at this volcanic 
system (Kreyns et al., 2020) which enables the flow of groundwater offshore, also raise the risk of saltwater 
intrusion to the terrestrial aquifer (Geng & Michael, 2020). Our regional-scale CSEM mapping offshore west 
of Hawai'i shows the precise location of several individual SGD plumes and their spatial distribution from 
the seafloor to the ocean surface. This provides evidence of a complex hydrogeologic setting of multiple in-
terbedded volcanic layers that channel fresh groundwater to deeper layers, allowing freshwater to discharge 
at a considerable distance from the coastline. Hence, characterizing SGD in a tectonic setting such as Ha-
wai'i is of global importance since SGD rates in tectonically active margins are significantly greater than in 
passive margins (Zhou et al., 2019).

Here, we demonstrate that the CSEM method can effectively map offshore SGD. The capability of sur-
face-towed CSEM to operate at a minimum water depth of ∼10  m provides a practical methodology to 
bridge the data gap related to distribution, extent, and dimensions of SGD across coastal transition zones. 
Therefore, combined with a suite of biochemical parameters (e.g., Rodellas et al., 2015), CSEM can help 
assess SGD effects on marine biogeochemistry at local and regional scales. However, to ideally evaluate 
the impact of nearshore/offshore SGD at different geologic settings [e.g., karstic submarine canyon (Paldor 
et al., 2020), carbonate rock aquifers (Holmden et al., 2012)], studies should also include CTD, nutrient, 
metal, and carbonate chemistry time-series measurements to derive freshwater fluxes, residence time, and 
seasonal variability.

5.  Conclusions and Implications
Spatiotemporal variability of fresh SGD in coastal waters alters hydrologic processes, promotes primary pro-
duction, supports food webs, changes stable isotope levels, and plays a prominent role in the global carbon 
budgets. Various geophysical, geochemical, and bioecological studies suggest that point-source SGD's in 
west Hawai'i are scattered across a large regional-scale. Our marine electromagnetic imaging reveals multi-
ple offshore fresh SGD plumes, most likely fed by submarine freshened water layers. Plume-scale resistivi-
ty-to-salinity calculation and volumetric estimation infer that significant freshwater volumes accommodate 
these water column plumes, thus, highlighting the renewability nature of Hawai'i's hydrologic systems. 
Future hydrogeological models will benefit from incorporating offshore SGD to optimize aquifers' sustain-
able yields and storage calculations. This is the first study to demonstrate the CSEM method's capability 
to image and delineate freshwater plumes from the seafloor to the ocean surface in high-resolution. Thus, 
hydrogeologic, oceanographic, and biogeochemical studies can use marine CSEM to characterize complex, 
large-scale coastal water processes worldwide.
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Data Availability Statement
The CSEM data are available for download at https://doi.org/10.4211/hs.e0a7f2a216e9456a8567b850db1cf1f9.
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